The probability of solving the specific problem independently by the persons’ A and B are 1/2 and 1/3 respectively. In case, if both the persons try to solve the problem independently, then calculate the probability that the problem is solved.

**Solution:**

Given that, the two events say A and B are independent if P(A ∩ B) = P(A). P(B)

From the given data, we can observe that P(A) = 1/2 & P(B) = 1/3

The probability that the problem is solved = Probability that person A solves the problem or the person B solves the Problem

This can be written as:

= P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

If A and B are independent, then P(A ∩ B) = P(A). P(B)

Now, substitute the values,

= (1/2) × (1/3)

P(A ∩ B) = 1/6

Now, the probability of problem solved is written as

P(Problem is solved) = P(A) + P(B) – P(A ∩ B)

= (1/2) + (1/3) – (1/6)

= (3/6) + (2/6) – (1/6)

= 4/6

= 2/3

Hence, the probability of the problem solved is 2/3.